13,664 research outputs found

    Least-Squares Approximation by Elements from Matrix Orbits Achieved by Gradient Flows on Compact Lie Groups

    Full text link
    Let S(A)S(A) denote the orbit of a complex or real matrix AA under a certain equivalence relation such as unitary similarity, unitary equivalence, unitary congruences etc. Efficient gradient-flow algorithms are constructed to determine the best approximation of a given matrix A0A_0 by the sum of matrices in S(A1),...,S(AN)S(A_1), ..., S(A_N) in the sense of finding the Euclidean least-squares distance min⁥{∄X1+...+XN−A0∄:Xj∈S(Aj),j=1,>...,N}.\min \{\|X_1+ ... + X_N - A_0\|: X_j \in S(A_j), j = 1, >..., N\}. Connections of the results to different pure and applied areas are discussed

    Controlling Several Atoms in a Cavity

    Full text link
    We treat control of several two-level atoms interacting with one mode of the electromagnetic field in a cavity. This provides a useful model to study pertinent aspects of quantum control in infinite dimensions via the emergence of infinite-dimensional system algebras. Hence we address problems arising with infinite-dimensional Lie algebras and those of unbounded operators. For the models considered, these problems can be solved by splitting the set of control Hamiltonians into two subsets: The first obeys an abelian symmetry and can be treated in terms of infinite-dimensional Lie algebras and strongly closed subgroups of the unitary group of the system Hilbert space. The second breaks this symmetry, and its discussion introduces new arguments. Yet, full controllability can be achieved in a strong sense: e.g., in a time dependent Jaynes-Cummings model we show that, by tuning coupling constants appropriately, every unitary of the coupled system (atoms and cavity) can be approximated with arbitrarily small error

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure
    • 

    corecore